If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-26x-320=0
a = 18; b = -26; c = -320;
Δ = b2-4ac
Δ = -262-4·18·(-320)
Δ = 23716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{23716}=154$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-154}{2*18}=\frac{-128}{36} =-3+5/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+154}{2*18}=\frac{180}{36} =5 $
| 8x-26=60+6x | | 1.x+29=67 | | 92=d+34 | | (2x+12)+60=180 | | -(x^2-2)/(x^2+2)^2=0 | | 2/9x=7 | | 2(x-1)+8=4(x-5) | | 24b^2-138b-210=0 | | (x-3/2)+1/3=4x/5 | | 10=2(p-4) | | 14-2=c | | -7/13x=5/2 | | 76.9=28.2n+20.5 | | 4/5x+6/5=-12 | | X^2=3x+88 | | x/100=3/5 | | x2=3x+88 | | H=-16t^2+910 | | 4x-3=2x-5÷2 | | -4(k-6)=12 | | 2/7+a=45/6 | | 4x+2/7=3 | | x^2+50=20x | | 3(t-4)+7=-11 | | 3x=18/5 | | 6x+17=7x-3 | | 2(x+6)=2(6+3) | | 9x-2/5=-1 | | 3(3((30)/(13))-1)-(7-4((30)/(13)))=x | | 1/2x−5=1/3x+7 | | 12x+20=13x+8 | | (x−7)^3/4=8 |